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Abstract. Packers, i.e. inflatable balloons made from elastomere, reinforced with cords, are used by the oil
industry for sealing an interval along the wellbore, for open – hole stress tests to be performed. Thiercelin et al.
have shown that the packer behaviour is critical to the success of such tests. In particular, the pressure exerted
by the packer on the formation needs to be as close as possible to the pressure in the interval, to avoid fracture
initiation or fracture growth along the packers. Moreover, axial tension in the rock needs to be kept to a minimum
to avoid initiation of transverse fractures at the packer level that would be detrimental to the test. In this paper
the theory of membranes, reinforced with inextensible cords, developed by Kydoniefs and its implementation for
packers done by Atkinson and Peltier, is used to gain insight into the stresses which are generated in the rock,
due to packer inflation. The shape of the packer is first computed for a given net pressure across the packer, via
the solution of a nonlinear integral equation. Then the pressure acting on the formation, along the packer/rock
contact zone, is found. Results show that the pressure applied by the packer on the rock during stress testing, is
almost uniform and close to packer inflation pressure. The formation is afterwards considered loaded with the
latter pressure and the stresses in the rock are found by either a finite-element or a semi-analytic method. Axial
stresses develop at packer ends but are much smaller than the pressure applied to the formation. Tangential stresses
develop at the wellbore wall and are higher at packer level than at interval level.
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1. Introduction

The Dual Packer Module (MRPA∗) of the Modular Formation Dynamics Tester (MDT∗) is
used to perform open-hole stress tests. Previous research by Thiercelin et al. [1] has revealed
that the packer behaviour is critical to the success of such tests. In particular, the pressure
exerted by the packer on the formation needs to be as close as possible to the pressure in
the interval to avoid fracture initiation or fracture growth along the packers. Moreover, axial
tension in the rock needs to be kept to a minimum to avoid initiation of transverse fractures at
the packer level that would be detrimental to the test.

This paper presents the use of a packer model to gain insight into the stresses which are
generated at the wellbore wall by the packer inflation. The packer model that we consider in
this paper consists of an inflatable, reinforced and initially cylindrical membrane. The rein-
forcing consists of two families of inextensible cords. This corresponds to the sliding coupling
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mechanism that the MRPA elements have. Although these elements consist of several layers
with different properties, it has been shown in [4] that their behaviour is dominated by the
properties of the main reinforcing layer. The model presented here is therefore meaningful,
although the results will have to remain qualitative.

Kydoniefs [2] has developed the theory for the axisymmetric deformation of an initially
cylindrical membrane, composed of an elastic, homogeneous, isotropic and incompressible
material, possessing a general strain energy function and reinforced by two families of per-
fectly flexible and inextensible helicoidal cords. He also gave applications to specific boundary-
value problems. The theory developed by Kydoniefs [2], was implemented by Atkinson and
Peltier [3], in the case of a packer membrane reinforced with inextensible cords. They pre-
sented results for the deformed shape of the packer, the tension in the cords and the shear
stress and strain in the membrane. Based on the output of their model, they made packer
design suggestions that could be of practical significance.

In this paper we use the theory developed by Kydoniefs [2] and the methods implemented
by Atkinson and Peltier [3], in order to evaluate the pressure exerted by inflatable packers, on
the wellbore. A single packer and a straddle packer arrangement (two packers one below the
other) are considered. The borehole is considered as rigid, as long as the packer shape is to be
found. A justification of this assumption is given, by showing that the radial displacement on
the open hole wall due to packer pressure is very small and does not alter the touch pressure
and consequently the pressure profile as well. Two extremes are considered for the interface
between the packer and the wellbore wall: a perfect slip (zero shear stress) or a perfect bond
(zero axial displacement) condition. It, however, turns out that the for both packer/wellbore
interface conditions, the very same packer shape is yielded, within a constant due to the
different position of the point, which the initial mid point of the packer in the undeformed
configuration, is mapped to. For large net pressures, i.e., much greater than touch pressures,
the packer shape remains unaltered when the net pressure is changed.

Once the packer shape has been computed, the pressure profile acting on the formation,
along the contact zone between the packer and the wellbore, is found via the solution of a
nonlinear integral equation. Still the formation is considered rigid, and the pressure profile
along the packer/wellbore interface is yielded as almost uniform.

Having found the pressure profile acting on the borehole due to the inflated packer, we then
evaluate the stresses that are generated in the rock, due to a single packer. The rock is now
considered as an elastic material, loaded axisymmetrically by the packer induced pressure.
Pure bond and pure slip packer/formation interface conditions are again considered. Two
approaches, a finite element one and a semi-analytic one are followed for the determination of
the stresses into the rock. Both give almost identical results. The value of the axial stress σzz
is, for both pure bond and pure slip cases, significantly smaller than the radial and tangential
stresses. However, the maximum positive σzz for the perfect slip case is almost three times
larger than σzz for the perfect bond case.

Another important result, which is a consequence of the small value of the touch pressure,
is the confirmation that the tangential stress σθθ at the wellbore wall is close to packer pressure.
This implies that during a sleeve fracturing operation, (i.e., initiation of a fracture by applying
pressure on the wellbore while preventing the fluid from entering the rock by the use of a
sleeve), creation of an axial fracture along the entire contact length is much more likely than
creation of a transverse fracture.
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Figure 1. Framework for the analysis.

2. The shape of the packer membrane

Inflatable packers are considered as initially cylindrical membranes of length 2l0 and uniform
thickness 2h0, composed of an elastic, homogeneous, isotropic and incompressible material,
possessing a strain energy function W = W(I1, I2) and reinforced by two families of per-
fectly flexible and inextensible cords. The model used in this paper for the simulation of the
deformation of inflatable packers, is the one developed by Kydoniefs [2]. The same model
was also used by Atkinson and Peltier [3] in their study of the levels of strain and stress in the
membrane and the cords within a packer. For a detailed account of the underlying theory, the
reader should resource to [2] and [3].

For a brief account of the geometry of the problem, Figure 1 is invoked. The deformation
is referred to two systems of cylindrical coordinates, namely (O, ρ, θ,η) for the undeformed
configuration and (O, r, θ, z) for the deformed configuration (Figure 1). The point of origin
O is taken so that η and z are measured from the top (fixed) part of the packer membrane
and are positive downwards. (ρ∗, θ∗,η∗), with ρ∗ = constant , are then the coordinates in the
undeformed configuration, of a point which has coordinates (r∗, θ∗, z∗) in the deformed state.

An expression for the strain energy density of the elastomer of the packer, has been deduced
from experimental tests [4]. A representative, in SI units, is

W = 0·24 × 106(I1 − 3)+ 0·0084 × 106(I1 − 3)2. (1)

Using this expression, we can deduce the functions of the forces in the elastomere, which then
allows the computation of the angle ω (see [2] and [3]).

The shape of the packer membrane is computed for either the perfect slip (zero shear
stress) or the perfect bond (zero axial displacement) condition, between the packer membrane
and the wellbore wall. Any real situation is bound to lie between these two limiting cases. For
each one of the above cases, two subcases are considered: either the membrane touches the
wellbore wall at a single point, or the membrane is in contact with the wellbore wall over a
finite length. In all cases, the maximum expansion ratio �2 is given by:

�2 = Rw

ρ
, (2)
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where Rw is the wellbore radius.
When the membrane touches the wall at a single point, the shape of the free membrane

and the value of the net pressure are solved for; in the case where the membrane is in contact
with the wellbore wall over a finite length, the net pressure is given, and the shape of the
free membrane together with the extension of the contact length are solved for. Note that a
reasoning similar to that when the membrane touches the wall at a single point, could be used
to determine the shape of the membrane when it does not touch the wellbore wall at all, with
�2 different from Rw/ρ.

Considering the two systems of reference shown in Figure 1, we see that the use of large
deformations implies the following relations between the deformed shape and the undeformed
(reference) shape:

dz

dr
= cot(ω),

dr

dξ
= sin(ω), dr = ρdλ2, dη = dξ

λ1
. (3)

These expressions will be used to determine the complete shape of the packer in the following
subsections.

If one considers a point X defined by (ρ,η) in the reference system and mapped to (r, z)
in the deformed system, Equations (3) yield the following relationships:

λ2 = r

ρ
, (4)

z = ρ

∫
cot(ω) dλ2, (5)

η = ρ

∫
dλ2

λ1 sin(ω)
, (6)

ξ = ρ

∫
dλ2

sin(ω)
. (7)

Note that the limits of the above integrals will depend on the choice of origin and orientation
of z and η.

2.1. PERFECT SLIP BETWEEN THE PACKER AND THE FORMATION

In this case we assume that the rock/packer interface is free to slip, which means that, along
the interface, τrθ = τrz = 0.

2.1.1. The net pressure in the packer is equal to the touch pressure
Let us call net pressure the value of the pressure acting across the membrane, i.e., the differ-
ence between the pressure in the packer Pk and the hydrostatic pressure Ph. In this case, the
pressure in the packer Pk is such that the membrane does touch the wall at a single point B,
which happens to be in the middle of the packer. The corresponding value of the net pressure
is called touch pressure Po.

Figure 2a shows the membrane in the current configuration and the reference configuration.
The points A′, C ′ as well as the middle point B ′ map into the points A, C and B, respectively,
through the deformation. Note that ω(P ), which denotes the angle formed by the tangent
to the meridian of the deformed membrane and the axis of symmetry, is a function of the
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Figure 2. Shape of the membrane in the deformed and undeformed configurations. (a) Schematic diagram of a
meridian of the packer membrane at touch pressure. (b) Shape of the meridian for a pressure greater than touch
pressure. (c) Shape of the membrane for the no-slip case. (d) Shape of the membrane for the no-slip case for a
pressure increment.

pressure P . Equation (24) in [3] relates ω with P . The appropriate theory for the derivation of
Equation (24) in [3] is also presented in [3].

At touch pressure, the mapping between the deformed shape and the undeformed shape
yields:

A′B ′ = B ′D′ = ρ

∫ �2

1

dλ2

λ1 sin ω(Po)
= lo (8)
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and �2 = Rw/ρ, where Rw is the wellbore radius and ρ the initial radius of the packer
membrane. The value of the touch pressure Po is determined by solving this nonlinear integral
equation, for example by an iterative method.

Once the value of Po has been computed, the complete shape of the packer membrane can
be determined with z being a function of r:

zA = 0, (9)

zC(r) = ρ

∫ λ∗
2

1
cot(ω(Po)) dλ2, (10)

λ∗
2 = r/ρ, zB = ρ

∫ �2

1
cot(ω(Po)) dλ2, (11)

zE(r) = ρ

∫ �2

1
cot(ω(Po)) dλ2 − ρ

∫ λ∗
2

�2

cot(ω(Po)) dλ2, (12)

zD = 2ρ

∫ �2

1
cot(ω(Po)) dλ2. (13)

2.1.2. The net pressure in the packer is above touch pressure
As the packer pressure is increased, the current configuration looks as shown in Figure 2b.
Under this configuration the point B may have moved (up) compared to the previous configu-
rations. The pressure in the packer is Pk. The packer is now sealing, and the pressure P1, above
the packer, is not necessarily equal to the pressure P2 below the packer. If the top packer of a
straddle-packer arrangement is considered, P2 is the pressure in the test interval and P1 is the
pressure in the remainder of the well, whereas it is the reverse if the bottom packer of such an
arrangement is considered. AC has therefore the pressure PAC = Pk −P1 acting across it and
DE has the pressure PDE = Pk − P2 acting across it.

Note that both �2 and the values of the net pressure across both halves of the packer are
now known, which leaves only the shape of the packer to be determined.

Note that A′D′ = 2lo, which is the length of the packer membrane in the reference body,
is fixed. Then:

ZC = ρ

∫ �2

1
cot(ω(PAC)) dλ2, (14)

ZA = 0, (15)

ZB = ZC + (C ′B ′)�1, (16)

ZE = ZB + (B ′E′)�1, (17)

ZD = ZE + ρ

∫ �2

1
cot(ω(PDE)) dλ2. (18)

Now:

A′C ′ = ρ

∫ �2

1

dλ2

λ1 sin ω(PAC)
, (19)
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E′D′ = ρ

∫ �2

1

dλ2

λ1 sin ω(PDE)
(20)

and

C ′E′ = 2lo − A′C ′ − E′D′. (21)

So we can miss out ZB (Equation 16) since ZE = ZC + (C ′E′)�1 and the point B will
presumably have moved. We know that A′B ′ = lo so:

ZB = ZC +�1(lo − A′C ′) (22)

Putting everything together, we can now determine the complete deformed shape of the
packer. For a point F located between A and C (Figure 2b) we have:

ZF=A = 0, (23)

ZF (λ
∗
2) = ρ

∫ λ∗
2

1
cot(ω(PAC)) dλ2 (24)

with λ∗
2 = r/ρ

ZF=C = ρ

∫ �2

1
cot(ω(PAC))dλ2 (25)

and for a point G located between E and D (Figure 2b):

ZG=E = ZC + 2�1lo −�1ρ

∫ �2

1
[ 1

λ1 sin ω(PAC)
+ 1

λ1 sin ω(PDE)
] dλ2, (26)

ZG(λ
∗
2) = ZE + ρ

∫ �2

λ∗
2

cot ω(PDE)dλ2, (27)

ZG=D = ZE + ρ

∫ �2

1
cot ω(PDE)dλ2. (28)

Finally we have:

ZB = ZC +�1lo −�1ρ

∫ �2

1

dλ2

λ1 sin ω(PAC)
. (29)

2.2. PERFECT BOND BETWEEN THE PACKER AND THE FORMATION

Another limiting case is when no slip exists along the rock/packer interface. In this case, we
assume that any point of the packer membrane does not move any more once it has touched
the formation, i.e., uz = 0. Up to the touch pressure, the packer behaviour is obviously the
same as that in the previous case. One therefore starts in the configuration shown in Figure 2c.
ZB is now fixed but is still given by:

ZB = ρ

∫ �2

1
cot(ω(Po))dλ2 (30)
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The membrane configuration when one increases the pressure from P to P + dP is shown
on Figure 2d. Let us first analyse the bottom part of the packer. Let us assume we know the
shape of the membrane at a net pressure P , and try to find the shape at P + dP , satisfying the
perfect bond condition along BE1. The corresponding situation in the reference body is:

D′E′
1(P ) = −ρ

∫ �2

1

dλ2

λ1 sin[ω(P )] (31)

and

D′E′
1(P + dP) = −ρ

∫ �2

1

dλ2

λ1 sin[ω(P + dP)] ; (32)

therefore:

dE′
1(P ) = D′E′

1(P + dP)−D′E′
1(P )

= − ρ

∫ �2

1

dλ2

λ1

(
1

sin ω[(P + dP)] − 1

sin[ω(P )]
)

; (33)

hence

dE′
1(P )

dP
= −ρ

∫ �2

1

dλ2

λ1

d

dP

1

sin[ω(P )] = ρ

∫ �2

1

dλ2

λ1

(
cos[ω(P )]
sin2[ω(P )]

)
dω(P )

dP
. (34)

Integrating from touch pressure Po to current net pressure P , we have:

∫ P

Po

dE′
1(P ) = −ρ

∫ �2

1

dλ2

λ1

(
1

sin[ω(P )] − 1

sin[ω(Po)]
)
. (35)

Hence

B ′E′
1 = −ρ

∫ �2

1

dλ2

λ1

(
1

sin[ω(PD1E1)]
− 1

sin[ω(Po)]
)
. (36)

Recognising that

ρ

∫ �2

1

dλ2

λ1 sin[ω(Po)] = lo (37)

we observe that

B ′E′
1 = lo − ρ

∫ �2

1

dλ2

λ1 sin[ω(PD1E1)]
(38)

and

BE1 = �1(B
′E′), (39)

which gives for ZE1 :

ZE1 = ZB +�1lo −�1ρ

∫ �2

1

dλ2

λ1 sin[ω(PD1E1)]
. (40)
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Similarly:

D′
1E

′
1 = −ρ

∫ �2

1
cot[ω(PD1E1)] dλ2, (41)

which gives for ZD1 :

ZD1 = ZB +�1lo −�1ρ

∫ �2

1

dλ2

λ1

1

sin[ω(PD1E1)]
+ ρ

∫ �2

1
cot[ω(PD1E1)] dλ2. (42)

Any point G between D and E is given by:

ZG(λ
∗
2) = ZE1 + ρ

∫ �2

λ∗
2

cot[ω(PDE)] dλ2 (43)

with λ∗
2 = r/ρ.

Note that, although the derivation is different, these equations yield, within a constant due
to the different position of point B, the very same shape as for the perfect slip case. In fact,
along the portion where the membrane is in contact with the wellbore wall, the membrane
ignores the behaviour of the rock/packer interface once the maximum expansion ratio �2 is
fixed. This is a consequence of the hypothesis that the cords are inextensible.

For the top part, two limiting cases can be considered: either A and B are both fixed, or B
is fixed and A is free to move. Experiments show that the real behaviour lies somewhere in
between these two limiting cases.

If one considers that A and B are fixed, one has:

ZC1 = ρ

∫ �2

1
cot[ω(PAC)] dλ2. (44)

Any point F between A and C is given by

ZF (λ
∗
2) = ρ

∫ λ∗
2

1
cot[ω(PAC)] dλ2 (45)

with λ∗
2 = r/ρ. However,

A′C ′
1 = ρ

∫ �2

1

dλ2

λ1 sin[ω(PAC1)]
(46)

and

A′B ′ = ρ

∫ �2

1

dλ2

λ1 sin[ω(Po)] = lo, (47)

hence C ′
1B

′ = A′B ′−A′C ′
1 can not satisfy the constraint �1(C

′
1B

′) = C1B. This either means
that the packer loses its integrity as it sticks to the wall, or that the cords have to extend to
satisfy this condition, which is not allowed within the restrictions of this model.

If one considers that the top part of the packer is free to move, the top part of the packer
will be pulled down to keep the integrity of the packer. Then, following a similar reasoning to
that for the bottom part of the packer, one finds:

ZC1 = ZB −�1lo +�1ρ

∫ �2

1

dλ2

λ1 sin[ω(PA1C1)]
, (48)
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ZA = ZC1 − ρ

∫ �2

1
cot[ω(PA1C1)]dλ2, (49)

ZF (λ
∗
2) = ZC1 − ρ

∫ �2

λ∗
2

cot[ω(PA1C1)] dλ2 (50)

with λ∗
2 = r/ρ. Note that, as for the bottom part of the packer, this yields the same shape,

within a constant, as for the perfect slip case.

3. Determination of the pressure acting on the formation

At each point in the contact zone, the pressure acting on the formation Pf is equal to the
current pressure in the packer Pk minus the pressure that is taken by the membrane. The
pressure taken by the membrane actually corresponds to the net pressure acting across the
membrane when it did touch the wall at that point for the first time in the reference coordinate
system. Pf therefore varies from well pressure at the end points of the interval, to a maximum
of Pk − Po at the initial membrane midpoint.

3.1. PERFECT SLIP BETWEEN THE ROCK AND THE PACKER

Following the same notation as in Figure 2b, we can write the pressure acting on the formation
Pf across the contact zone. For any point J belonging to the top contact half - length CB of
the membrane:

Pf (zJ ) = Pk − P, (51)

where P satisfies the following integral equation:

zB − zJ = �1

(
lo − ρ

∫ �2

1

dλ2

λ1 sin[ω(P )]
)
. (52)

Also

Pf (zC) = Pk − (Pk − P1) = P1, (53)

Pf (zB) = Pk − Po. (54)

Similarly, for any point K belonging to the bottom contact half-length BE of the membrane:

Pf (zK) = Pk − P, (55)

where P satisfies the following integral equation:

zK − zB = �1

(
lo − ρ

∫ �2

1

dλ2

λ1 sin[ω(P )]
)
. (56)

Also

Pf (zB) = Pk − Po, (57)

Pf (zD) = Pk − (Pk − P2) = P2. (58)
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3.2. PERFECT BOND BETWEEN THE ROCK AND THE PACKER

Following the same notation as in Figure 2c, we can write the pressure acting on the formation
Pf across the contact zone. For any point G belonging to the bottom contact half-length BE1

of the membrane:

Pf (zG) = Pk − P, (59)

where P satisfies the following integral equation:

zG − zB = �1

(
lo − ρ

∫ �2

1

dλ2

λ1 sin[ω(P )]
)
, (60)

which has the same form as equation (56). Note that zB is, however, different. We also have

Pf (zB) = Pk − Po, (61)

Pf (zE1) = P2. (62)

Similarly, for any point F belonging to the top contact half-length BC1 of the membrane:

Pf (zF ) = Pk − P, (63)

where P satisfies one of the two following integral equations:
− if it is considered that the top part of the packer cannot move:

zF = ρ

∫ �2

1
cot[ω(P )] dλ2; (64)

− if it is considered that the top part of the packer can be pulled down:

zB − zF = �1

(
lo − ρ

∫ �2

1

dλ2

λ1 sin[ω(P )]
)
. (65)

We also have

Pf (zC1) = P1, (66)

Pf (zB) = Pk − Po. (67)

4. Results

In this section we first analyze the pressure applied to the rock by a single packer and a straddle
packer arrangement, then we analyze the influence of the pressure imposed by the packer on
the wellbore wall and its effect on the state of stress in the rock.

4.1. SINGLE PACKER

Results are presented for a 5′′-diameter packer and a maximum inflation ratio of 1·8. The initial
length of the membrane was 1 m, its initial thickness of 1 cm, and its strain energy density
parameters as in (1). The initial distance between two adjacent cords was 5 mm. These are,
to the best of our knowledge, typical parameters for a packer element. For a single packer
arrangement, the same value is assigned to the pressure above and below the packer. This
means that the net pressure is the same for the top and the bottom part of the packer.

The shape of the deformed membrane is presented in Figure 3 for different values of the net
pressure inside the packer: touch pressure, 0·1 MPa, 1 MPa, 5 MPa and 10 MPa. Slat packers
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Figure 3. Single packer arrangement, one family of cords: deformed shape of the membrane for various net
pressures across the membrane.

have been considered here, namely that the initial angle between the families of cords is zero
(there is only one family of longitudinal cords). It is also worth noting that the changes in the
packer shape are minimal once the net pressure has reached 1 MPa: hence we have plotted the
shapes for 1 MPa, 5 MPa and 10 MPa in the same figure. Most of the changes in shape occur
close to the net pressure, which is very low for this case (about 0·075 MPa).

In order to test the influence of the initial angle between the cords, the deformed shape of
the membrane is presented in Figure 4 for an initial angle of 10 degrees, for touch pressure and
5 MPa. Yet again, the packer seems to lock into a specific shape once the net pressure reaches
1 MPa, hence the presentation of the profile for 5 MPa only. The only difference with the
previous computations is that the packer is now able to get slightly shorter whilst expanding
and that the touch pressure is slightly higher (of the order of 0·079 MPa).

A profile of pressure acting on the formation is presented in Figure 5 for a single family of
cords and a net pressure of 0·1, 1, 5 and 10 MPa. As the touch pressure is low compared to
the inflation pressure, the pressure is nearly constant along the contact zone and is close to the
net pressure. For comparison, the pressure profile for a net pressure of 5 MPa is presented in
Figure 6 when the angle between the two families of reinforcing cords is equal to 10 degrees.
The shape of the profile is essentially similar to that presented in the previous figure.
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Figure 4. Single packer arrangement, two families of cords (α = 10◦): deformed shape of the membrane for
various net pressures across the membrane.

Figure 5. Single packer arrangement, one family of cords: profile of pressure acting on the wellbore for various
net pressures across the membrane.
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Figure 6. Single packer arrangement, two families of cords (α = 10◦): profile of pressure acting on the wellbore
for a net pressure of 5 MPa across the membrane.

4.2. STRADDLE PACKER ARRANGEMENT

For a straddle packer arrangement, a different value is assigned to the pressure above and
below the packers. For the top of the top packer and the bottom of the bottom packer, the
external pressure is equal to the hydrostatic pressure. For the bottom of the top packer and the
top of the bottom packer, the external pressure is equal to the interval pressure, typically 1 MPa
lower than the internal pressure in the packers. This only arises when sealing is achieved, i.e.,
when the net pressure is above touch pressure. The characteristics of the packers and the
wellbore dimension are similar to that of the previous section.

The shapes of the deformed membrane, for both the top and bottom packers and for 5 MPa
and 10 MPa net pressures across the membrane, are presented in Figure 7. All four shapes are
almost identical, hence are presented in a single figure. As the angle between the families of
reinforcing cords does not have much influence here, the case for slat packers has only been
considered here. The shape at touch pressure has not been reproduced as it is similar to that
presented in Figure 3. A profile of pressure acting on the formation is presented in Figure 8 for
a single family of cords and a net pressure of 5 and 10 MPa. The pressure is nearly constant
across most of the contact area and equal for both the top and the bottom packers. Note that
the pressure acting on the formation is 4 and 9 MPa in the interval, for the the 5 MPa and
10 MPa net pressure cases respectively.

4.3. STRESS FIELD GENERATED BY A SINGLE PACKER INTO THE ROCK. FINITE-
-ELEMENT ANALYSIS

The results shown in the previous subsection demonstrate that the pressure applied on the
wellbore wall by the packer, is nearly uniform. Such an almost constant presssure distribution
is a result of the assumption of a rigid wellbore. Nevertheless, we now have to compute
the stresses developed in the elastic rock, due to packer inflation. We expect that the radial
displacement on the wellore will be very small, such that the profile of constant pressure is
not altered. In an attempt to justify the constant pressure argument, we calculated the radial
displacement u at the midpoint of the packer/rock interface, using the semi-analytic method
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Figure 7. Straddle packer arrangement, one family of cords: deformed shape of the membrane for 5 MPa and
10 MPa net pressures across the membrane for both top and bottom packers.

Figure 8. Straddle packer arrangement, one family of cords: profile of pressure acting on the wellbore for various
net pressures across the membrane.
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Table 1. The radial displacement at the midpoint of the
packer/wellbore interface

E = 50 GPa E = 20 GPa E = 10 GPa

Pure slip 2·6 × 10−5m 6·7 × 10−5m 1·3 × 10−4m

Pure bond 2·6 × 10−5m 6·6 × 10−5m 1·3 × 10−4m

presented in Appendix B. In that example a single packer with one family of cords is inflated
at 10 MPa in a 9 inch diameter wellbore; the resulting contact length is 0·84 m; the elasticity
modulus of the rock is either 10 GPa, or 20 GPa or 50 GPa and its Poisson’s ratio is 0·2.
Results appear in Table 1.

Note that values of the radial displacement at other points (different from the midpoint of
the contact length) along the packer/wellbore interface, are smaller than the ones presented in
Table 1.

Next we assumed that the wellbore radius is increased by 6.6 × 10−5m, i.e., the value
indicated in Table (1) for a rock with Young’s modulus E = 20 GPa. We calculated the touch
pressure for the displaced wellbore, which turned out to be in relative error of order 10−4,
with the touch pressure for the rigid wellbore. Hence the small wellbore radial diplacement
does not actually alter the touch pressure. Since the determination of the touch pressure from
(8), is the starting point for finding the shape of the membrane and the pressure on the rock,
the latter should not change compared to the one found by assuming a rigid wellbore. We
have therefore assumed that the pressure is constant over the rock packer/interface, in order to
analyze the state of stress in the rock.

The following axisymmetric problem has been considered: the formation is infinite, linear
elastic, with a circular cylindrical hole in the middle; no stress is applied to the formation
(known analytic solutions which provide the stress field around the wellbore in presence of
far-field stresses can be superposed if required); no pressure is acting on the hole boundary
apart from a finite strip where a pressure Pf is acting. We only consider the influence of a
single packer. The problem of the state of stress imposed by a straddle packer arrangement
can also be obtained by superposition.

Both pure slip and pure bond cases have been considered. For the pure slip condition,
zero shear stress τrz = 0 along the entire wellbore wall is considered. For the perfect bond
condition, zero axial displacement uz = 0 along the strip over which the non-zero pressure
acts, is considered. These two cases are two extremes as some shear stress will be left even if
the contact between the packer and the wellbore wall is lubricated by mud cake. Furthermore,
it is difficult to believe that the packer membrane will be stiff enough to prevent any vertical
movement of the formation during loading. Anyhow, these provide bounds on the actual stress
acting on the formation.

As an example, the following analysis has been run using the finite element package AN-
SYS 5.5.1: a packer is inflated at 10 MPa in a 9 inch diameter wellbore; the resulting contact
length is 0·84 m; the elasticity modulus of the rock is 20GPa and its Poisson’s ratio is 0·2. Due
to the axial symmetry about the z axis and due to symmetry with respect to the z = 0 plane,
only a quarter of the actual geometry is considered. In Figure 9, a part of the discretisation
close to the contact region, is shown. Note that the Y axis in ANSYS corresponds to the z
axis of our notation. The arrows on the left indicate the applied pressure along the contact
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Figure 9. The finite element discretisation in the vicinity of the contact region.

half length and the triangles along the bottom side indicate rolling frictionless hinges. A
rectangular area with dimensions 25 times bigger than the contact length is discretised. Hinges
are imposed along the two far-field sides of this rectangular area (these sides do not appear in
Figure 9 and are 50 contact half-lengths far away from the pressure loading).

Vertical profiles of the axial stress σzz in the rock, are shown in Figures 10 (perfect slip)
and 11 (perfect bond). The locations where the maximum and the minimum axial stresses are
developed, are indicated by MX and MN, respectively. The corresponding values are assigned
to variables SMX and SMN on the right side of the graphs.

Tensile axial stresses develop for both geometries. They are maximum close to the end
point of the packer, just outside the contact region, for both the perfect slip and the perfect
bond case. Tensile axial stresses are however small compared to the radial and tangential
stresses that develop in the formation.

Figures 5 and 5 present vertical profiles of radial stress σrr , tangential stress σθθ and axial
stress σzz measured one tenth of a wellbore radius away from the wellbore. Results are ob-
tained from the finite element model (dashed line) as well as from a semi-analytic approach
(solid line), that is outlined in Appendix B. The stresses are normalised with respect to the
absolute value of the pressure |Pf | applied on the rock . The axial distance is normalised with
respect to the contact half length. Results from both methods are almost identical.

The value for σzz is, for both cases, significantly smaller than the two other stresses. How-
ever, the maximum positive σzz for the perfect slip case is almost three times larger than σzz
for the perfect bond case.



322 C. Atkinson et al.

Figure 10. Contours of the resulting axial stress σzz in the formation: perfect slip between the packer and the
formation.

Another important result, which is a consequence of the small value of the touch pressure,
is the confirmation that the tangential stress σθθ at the wellbore wall will be close to packer
pressure. During a micro-hydraulic fracturing test, the packer pressure is higher than the
interval pressure to ensure packer sealing. This means that the tangential stress σθθ will be
higher at packer level than at interval level. The risk of crack initiation at packer level exists,
unless the fracture has been initiated in the interval prior to micro-hydraulic fracture testing,
using the sleeve fracturing technique for example [5].

5. Conclusions

With this model and the range of parameters taken as typical for an MRPA packer ele-
ment, touch pressures are small compared to typical inflation pressures reached during a
stress test. This is in accordance with what is observed in the field and has several important
consequences.
− a significant contact area between the packer and the wellbore wall is already developed

even at low differential pressures;
− for interpretation purposes, assuming that a uniform pressure is applied to the rock along

the contact length is a good approximation; the value of this uniform pressure is close to
the packer inflation pressure;

− although the straddle packer arrangement considered here is not symmetrical, very little
difference appears between the behaviour of the top and the bottom packer;
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Figure 11. Contours of the resulting axial stress σzz in the formation: perfect bond between the packer and the
formation.

− the tangential stress σθθ at wellbore wall (see Figures 12 and 13) is close to packer pres-
sure; during micro-hydraulic fracturing testing, the risk exists that the hydraulic fracture
may be initiated at packer level; this provides a justification of the use of sleeve fracturing
prior to hydraulic fracturing to ensure proper location of the fracture;

These conclusions could change if a packer is developed for which the touch pressure is much
higher.

As far as the model for the packer itself is concerned, no real difference is observed be-
tween a perfect slip or a perfect bond between the packer and the wellbore wall. A difference
exists, however, for the stresses that develop in the formation because of packer inflation. For
both cases, tensile axial stresses develop at packer ends but are much smaller than the pressure
applied to the formation. The tangential tensile stresses that develop at packer level, however,
are for both cases of the order of magnitude of the pressure applied to the formation. This
implies that, during a sleeve fracturing operation, creation of an axial fracture along the entire
contact length is much more likely than creation of a transverse fracture.

Appendix A. Nomenclature

(O, r, θ, z) – cylindrical coordinate system; (O, ρ, θ,η) – cylindrical coordinate system;A,B,
C,D,E,F,G, J,K – points on the deformed membrane; A′, B ′, C ′,D′, E′, F ′,G′, J ′,K ′ –
corresponding points on the undeformed membrane; 2h0 – initial membrane thickness (l);
I1, I2 – strain invariants; 2lo – initial membrane length (l); P – net pressure across the mem-
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Figure 12. Vertical profiles of normalised radial stress,
tangential stress and axial stress taken 0·1 wellbore
radius away from the wellbore: perfect slip case. Semi-
analytic (solid line) and finite element (dashed line)
approach.

Figure 13. Vertical profiles of normalised radial stress,
tangential stress and axial stress taken 0·1 wellbore
radius away from the wellbore: perfect bond case. Semi-
analytic (solid line) and finite element (dashed line)
approach.
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brane (ml−1t−2) ; P0 – constant net pressure across the membrane; P1, P2 – total pressure
above and below the packer; Pf – pressure acting on the formation; Ph – hydrostatic pressure
in the well; Pk – pressure in the packer; Po – touch pressure; Rw – wellbore radius (l); W –
strain energy (ml−1t−2); α – initial angle between the cords and the cylinder generator; ξ –
curvilinear coordinate along the deformed meridian (l); λ1 – meridian extension ratio; λ2 –
radial extension ratio; �1 – maximum λ1; �2 – maximum λ2 i.e. packer expansion ratio; ω –
angle between the tangent of the deformed meridian and the axis of symmetry;

Appendix B

A semi-analytic solution for the stress field in the rock, generated by a single packer, is
presented here. The stresses and displacements for the axisymmetric problem of a circular
cylindrical hole in an infinite medium, are given in [6, pp. 383–385] by

u =
[

3m− 4

m
f (x)− xf ′(x)− g′(x)

]
cos βζ, (B1)

w = [
xf (x)+ g(x)] β sin βζ, (B2)

Rw

2G
σrr =

[
3m− 2

m
f ′(x)−

(
β2x + m− 2

mx

)
f (x)+ g′(x)

x
− β2g(x)

]
cos βζ, (B3)

Rw

2G
σθθ =

[
3m− 2

mx
f (x)− m− 2

m
f ′(x)− g′(x)

x

]
cos βζ, (B4)

Rw

2G
σzz =

[(
2

mx
+ β2x

)
f (x)+ 2f ′(x)

m
+ β2g(x)

]
cos βζ, (B5)

Rw

2G
τρz =

[
xf ′(x)− m− 2

m
f (x)+ g′(x)

]
β sin βζ (B6)

where u is the radial displacement, w is the axial displacement, σrr is the radial stress, σθθ is
the hoop stress, σzz is the axial stress, τrz is the shear stress, Rw is the wellbore radius, G is the
shear modulus of the rock, m = 2(λ +G)/λ with λ = νE/(1 + ν) (1 − 2ν). E is the Young’s
modulus and ν is the Poisson’s ratio. x = r/Rw is the normalised radial distance, ζ = z/Rw is
the normalised axial distance. Also

f (x) = C2K1(βx), (B7)

g(x) = D2K0(βx) (B8)

with K1(βx), K0(βx) being the modified Bessel functions. C2 and D2 are constants to be
determined so that the boundary conditions on the wellbore are satisfied. β is a variable, which
we will integrate over, later on.

We consider again the case of a single (axially symmetric) packer, lying symmetrically
with respect to the z = 0 plane. It’s contact half-length is a. For the perfect slip case, we have
on the wellbore

σrr = Pf for 0 ≤ z < a, (B9)

σrr = 0 for z > a, (B10)

τrz = 0 for z ≥ 0. (B11)
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If we write these stresses from (B3) and (B6), as cosine and sine transforms

σrr =
(

2

π

)1/2 ∫ ∞

0
F(β) cos βζ dβ, (B12)

τrz =
(

2

π

)1/2 ∫ ∞

0
G1(β) sin βζ dβ (B13)

with(
2

π

)1/2
Rw

2G
F(β) = lim

x→1

[
3m− 2

m
f ′(x)−

(
β2 + m− 2

m

)
f (1)+

g′(x)− β2g(1)

]
, (B14)

(
2

π

)1/2
Rw

2G
G1(β) = lim

x→1

[
f ′(x)− m− 2

m
f (1)+ g′(x)

]
β, (B15)

we require that

F(β) =
(

2

π

)1/2

Pf
sin(a′β)

β
, (B16)

G1(β) = 0, (B17)

where a′ = a/Rw is the normalised contact half-length. From (B14) and (B15), taking into
account (B7) and (B8), we can find C2 and D2 in terms of β. Then, by integrating the right-
hand sides of relations (B1–B6), over β from 0 to ∞, all stresses and displacements can be
evaluated at any point (x, ζ) in the rock.

For the perfect bond case, we have to satisfy the following boundary conditions on the
wellbore

σrr = Pf for 0 ≤ z < a, (B18)

w = 0 for 0 ≤ z < a, (B19)

τrz = 0 for z > a, (B20)

σrr = 0 for z > a. (B21)

From (B13), we write the shear stress g1(ζ) on the wellbore (x = 1) as a sine transform,

g1(ζ) =
(

2

π

)1/2 ∫ ∞

0
G1(β) sin βζ dβ (B22)

with G1(β) given from (B15). When it is also assumed that the shear stress can be expressed
as

g1(ζ) = δ(ζ − α′) (B23)

on the wellbore (δ(ζ − α′) is the Dirac delta function, α′ = α
Rw

and 0 ≤ α < a), from (B22)
and (B23) we find

G1(β) =
(

2

π

)1/2

sin(βα′). (B24)
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Writing the shear stress within the contact region 0 ≤ ζ < a′, in terms of an unknown
distribution T (α′) as

g1(ζ) =
∫ a′

0
T (α′)δ(ζ − α′) dα′. (B25)

and taking into account (B24), we eventually find

G1(β) =
(

2

π

)1/2 ∫ a′

0
T (α′) sin(βα′) dα′. (B26)

Again equations (B14) and (B15) are solved for C2 and D2. F(β) is given from (B16) but
G1(β) is now given from (B26). Thus C2 and D2 are found in terms of the unknown distribu-
tion T (α′). Their expressions are then inserted in (B2), whose right-hand side is written as an
integral over β from 0 to ∞. T (α′) is then evaluated from (B19), by solving an integral equa-
tion numerically. Finally, C2 and D2 are explicitly determined and stresses and displacements
can be found at any point in the rock, from (B1–B6), by integrating the right hand sides over
β from 0 to ∞.

For the numerical evaluation of the Fourier integrals we use the routine dftint from [7,
pp. 584–591].
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